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Flexural-Torsional Coupled Vibration of Slewing Beams Using
Various Types of Orthogonal Polynomials
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Dynamic behavior of flexural-torsional coupled vibration of rotating beams using the
Rayleigh-Ritz method with orthogonal polynomials as basis functions is studied. Performance
of various orthogonal polynomials is compared to each other in terms of their efficiency and
accuracy in determining the required natural frequencies. Orthogonal polynomials and functions
studied in the present work are: Legendre, Chebyshev, integrated Legendre, modified Duncan
polynomials, the special trigonometric functions used in conjunction with Hermite cubics, and
beam characteristic orthogonal polynomials. A total of 5 cases of beam boundary conditions
and rotation are studied for their natural frequencies. The obtained natural frequencies and
mode shapes are compared to those available in various references and the results for coupled
flexural-torsional vibrations are especially compared to both previously available references and
with those obtained using NASTRAN finite element package. Among all the examined or-
thogonal functions, Legendre orthogonal polynomials are the most efficient in overall CPU
time, mainly because of ease in performing the integration required for determining the stiffness
and mass matrices.
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ly near resonant condition, need to be well exam-
1. Introduction ined to assure a safe operation. Among the dy-

namic characteristics of these structures, deter-

Flexural-torsional coupled vibration of a rotat-
ing structure can occur in many engineering ap-
plications such as slewing robot arms, turbo-
machinery blades, aircraft propellers, helicopter
rotors, and spinning spacecraft. To design these
components, the dynamic characteristic, especial-
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mining the natural frequencies and associated
mode shapes are of fundamental importance in
the study of resonant responses, aeroelasticity,
and for forced vibration analysis. An accurate
prediction of the forced response is usually very
difficult because of the uncertainty of the excita-
tion. Moreover, under the resonance conditions,
what limits the vibration amplitude is the amount
of damping available. In most cases, the damping
is almost entirely aerodynamic and its assessment
is just as uncertain as the excitation. Thus, clas-
sic design practice for such structures has been
mainly to rely on the knowledge of the natural
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frequencies to avoid anticipated resonances.

Flexural-torsional coupled vibration occurs when
the centroid and the shear center of the cross
section of a beam do not coincide. The lack of
coincidence between the centroid and the shear
center occurs when the beam has less than two
axis of symmetry or has anisotropy in the materi-
al. This makes the elastic axis different from the
centroidal axis and thus causes torsional vibra-
tion when flexural vibrations occur. The flexural-
torsional coupled vibration can be analyzed by
combining one of the beam theories for bending
with a torsional theory and a consideration of the
various warping effects. The simplest model for
the analysis of coupled bending and torsional
vibration is combining the classical Bernoulli-
Euler theory for bending and St. Venant theory
for torsion (Bishop et al., 1989). Inclusion of a
warping effect, Bishop Cannon and Miao (1989),
results in a better approximation, especially for
higher modes. Also, Bercin and Tanaka (1997)
showed that for non slender beams, applying the
Timoshenko Beam theory instead of the Bernoulli-
Euler theory along with the inclusion of a warp-
ing effect can improve the accuracy for higher
modes.

Centrifugal force on rotating structure affects
dynamic characteristic of the structure by induc-
ing additional stiffness. At high rotational speeds,
centrifugal forces of considerable magnitude re-
sults in an additional stiffening of the beam, thus
increasing the natural frequencies of the struc-
ture. There are two more forces induced by inertia
force in a rotating beam. Young and Liou (1992)
identified these two forces as the Coriolis force
and the gyroscopic force. However, the effect of
these two forces on the dynamic characteristic is
insignificant compared to the effect induced by
the centrifugal force. The numerical results of
Leissa and Co (1984) on the rectangular can-
tilever plates show that the Coriolis force has an
insignificant effect upon the natural frequencies
if the angular speed is less than the first natural
frequency of the configuration. The present work
thus only focuses on the influence of centrifugal
forces on the natural frequencies of a thin-walled
beam.
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When obtaining the natural frequencies and
the mode shapes, the Rayleigh-Ritz method is a
good candidate for analysis, both because of its
simplicity and its ability to give good results with
relatively less effort. The method requires a linear
combination of assumed deflection shapes of struc-
tures in free harmonic vibration which satisfy at
least the geometrical or kinematical boundary con-
ditions of the vibrating structure. The results from
the Rayleigh-Ritz method depend directly on how
closely the assumed shape functions resemble the
actual mode shapes. When an assumed shape
function contributes to several modes, or when
some modes are not represented in the assumed
shape functions, then it is difficult to draw defi-
nite conclusions from the Rayleigh-Ritz results.

This study presents some insight into the nature
of the natural frequency values, as obtained by the
Rayleigh-Ritz method and their dependence on
the nature of the assumed shape functions.

The choice of the admissible functions is very
important to simplify the calculations and to
guarantee convergence to the exact solution. As
basis functions for the Rayleigh-Ritz method,
orthogonal polynomials enable the computation
of higher natural frequencies of any order to be
accomplished without facing any numerical diffi-
culties arising from the ill-conditioning of the
matrices like the ones encountered by Singhvi and
Kapania (1994) when simple polynomials were
used as the basis functions.

The theory of orthogonal polynomials has been
well established but the developments in con-
structive, computational, and software aspects are
still in an early stage (2005). Nonetheless, there
has been many efforts to use orthogonal poly-
nomials in structural analysis mainly for normal
mode analysis. Parasher et al.(2004) used ortho-
gonal polynomials to obtain modal properties of
piezoceramic cantilever beams. Liew et al.(2003)
applied orthogonal polynomials as trial displace-
ment functions for the analysis of thin, rectangul-
ar plates with central cut-outs. Houmat (2005)
used the shifted Legendre orthogonal polynomi-
als as shape functions for triangular elements in
h-p version of the finite element method to an-
alyze the vibration of membranes. As can be seen
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from various literatures, many kinds of orthogo-
nal polynomials can be used. However, the stu-
dies on the performance the comparison of vari-
ous polynomials has been somewhat lacking.

The main objective of the present work is to
study the development and analysis of the flex-
ural-torsional vibration of beams and discover
the effect of using orthogonal functions in obtain-
ing natural frequencies of structures experienc-
ing flexural-torsional coupled vibration. To find
most appropriate approximating orthogonal func-
tion to be used in Ritz method, 7 types of or-
thogonal functions are examined and compared
for their use as basis functions. The functions con-
sidered are : Legendre, Chebyshev, integrated Le-
gendre, modified Duncan polynomials, the special
trigonometric functions used in conjunction with
Hermite cubics, and beam characteristic orthogo-
nal polynomials. The orthogonal polynomials
are used in the analysis of the coupled flexural-
torsional vibration of rotating and non-rotating
beams. The results are compared to those given in
available references and for the case of coupled
flexural-torsional vibrations of Euler-Bernoulli
beam, these are compared to references and those
obtained using the NASTRAN finite element
package.

2. Equations of Motion
and Boundary Conditions

A beam that displays flexural-torsional vibra-
tion is shown in Fig. 1. The equations of motion
of a uniform beam executing coupled free bending
and torsional vibration with warping, given in
Bishop et al.(1983), are:

v ’(v+el)

EI 8x4+m o =0 (1)
a'0 ., %0 FL(+7rY) 0+ev]
ElL, e GJ p: +m py: =0 (2)

Here, ¢ denotes time, x is the distance along the
elastic axis of the beam and v is the bending dis-
placement of the shear center in the direction of
the v axis, the beam cross-section being assumed
symmetrical about the xz-plane, @ is the angle
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Fig. 1 A uniform channel beam

of twist, e the position of the section centroid C
relative to the shear center S, m is the mass per
unit length and 7 the polar radius of gyration
of the cross—section about the centroid. The flex-
ural rigidity with respect to the z-axis is EI,
while El, is the torsional rigidity associated with
warping and GJ is the Saint-Venant torsional
rigidity.

The boundary conditions are: at a clamped
end (x=0),

—g_0v —0_00
v=0= p and §=0= o (3)
at a free end (x=1L1L),
v _ . Fv_ . 0
FrER Ul v R i
0 00 @
and —E]w ax3 +G]E:O

When the beam rotates, the centrifugal force of
Q2 [%0ALdE (o is the material density and £ is
the rotating speed) is applied in axial direction.
The effect of this axial force in the equation of
motion is considered as was done by Banerjee and
Fisher (1992). The equations of motions (1) and
(2) become:
4 L 2 L 2

EI gxlj —me [ tdt gxz +m@e [ :dg% 5

mazv—me &0 =0 >
ot? ot?

+
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Note that the governing equations become some-
what complex in the presence of centrifugal force.

3. Derivation of Mass
and Stiffness Matrices

We assume the solution of the differential equa-
tions (5) and (6) to be in the form of
=V(x)e ™ (7)
=0 (x)e ™ (8)

vix,t)
0(x,t)

where @ denotes the frequency of natural flex-
ural-torsional coupled motion, and V(x) and
@ (x) denotes mode shapes during the vibration.
Substitution of Eqns. (7) and (8) into Eqns. (5)
and (6) gives

514 s o)
—a*(mV —meB) }e‘i‘”tzo
e (o 5

d@
dx*

— o {m(e*+7?) O@—me V}}e‘”‘”“zo

(9)

2
(e*+ 72)%;2)}

+EIL, (10)

The weak forms are derived by multiplying Equa-
tion (9) with a weight function w; and Equa-
tion (10) with a weight function w. and inte-
grating the resulting equations over the beam
length. Replace @® by A and the weak forms, Eqs.
(9) and (10), respectively become :

[l 8Y e 21 22)
—wz(mV—me@)} dx=0

[ful ‘e

a'e d@
+Elwa,

(1)

(7 >e@
dx] (12)

{m(e*+r? @—meV}} dx=0

Using integration by parts twice, the order of
differentiation of the weight function and the
dependent variable is distributed evenly.

[l one sl -8

—A(mle—mewl@)} dx

(13)

-I—wl{E[ ~me [ tde( - %)}
_dun dV)
i
[l e
R Rl
14
_m{mng §d§<e (2+7)f]T@> ~El, @+G]d@H
_dw o, dOF
L =0

From Egs. (13) and (14), primary variables are
identified as V, dV/dx, ©, d®/dx. Therefore V
and @ have to fulfill essential boundary condi-
tions for the fixed end. Using the essential and
natural boundary conditions, given in Egs.(3)
and (4), the weak forms reduce to,

d*wy d V dw dl
/ {E[ dx? / Lt dx dx
—me f §d§ duh ﬁ—/I(WNA/iV—mewf@)}dx=0
e dw, dV (15)
/{Elw 2 A m /§d§ dy dr
de d@ dw, d®

+Gy Q0 8O _ 022ty f@d@ i &5

—A{m(e”— 7%) un®—mew V}} dx=0

In the Rayleigh-Ritz method, we seek an approx-
imate solution to Eq. (15) in the form of a finite

series :
=200+ B (16)
:leej %(2)4_ %(2) (17)

where &, ¥, &, -
and v; and @; are the undetermined parameters. In
the Rayleich Ritz method, Functions ¥ fulfill the

are approximating functions
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specified nonhomogeneous essential boundary con-
ditions and ¥, ¥, -
geneous form of the essential boundary condi-

satisfy at least the homo-

tions. In the present work, orthogonal functions
are used as approximating functions. To express
Eq. (15) in the matrix form, we substitute V;, and
@, for Vand ¥ and ¢ and for w; and we,
respectively. The stiffness and mass matrices are
as follows :

-

ol
where

L (l’zqu‘(l) dw;,(l)
1‘1;'1: /(; {EI a2 dx?
w‘(l) dw‘(l)
2
_H%Q./ ey dx dx }d

(1) (2)
12— fmmfgd;dw’ d¥° e (20)

(19)

dx dx
T
tm@(e+r) [ tag O dw) d£2)}dx
b= / P AU TOdx (22)
M=~ [ oAU W dx (23)

L
ME= [ 0A(S+r) UL WPdx  (24)

The integrations for each terms in mass and stiff-
ness matrices were performed using MATHE-
MATICA (Wolfram Research Co., USA) when
orthogonal polynomials were used as approxi-
mating functions.

4. Approximating Functions

When using the Rayleigh-Ritz method, approxi-
mating functions have to fulfill essential bound-
ary conditions. In the case of bending-torsion cou-
pled beam, essential boundary conditions showin
in Eq.(3) have to be fulfilled at the clamped
base. However, Legendre and Chebyshev orthogo-
nal polynomials by themselves do not fulfill all

these essential boundary conditions while still
retaining their orthogonality. To fulfill these es-
sential boundary conditions, artificial linear and
rotational springs are introduced in the stiffness
matrix and even order Legendre and Chebyshev
polynomials are used. The reason that only the
even order polynomials are chosen is that the
even order polynomials fulfill the essential bound-
ary conditions of a cantilever beam. The addi-
tional stiffness terms to enable Legendre and
Chebyshev polynomials to be used in the analy-
sis are 1/2av(0)?% 1/2B0'(0)% 1/2y6(0)% and
1/206°(0)%, where @, 8, 7, and { are the artifi-
cial spring stiffnesses. To simulate cantilever con-
ditions, a large numerical value (up to 10') is
chosen for the stiffness of artificial springs.

Integrated Legendre polynomial is a linear com-
bination of two integrals of Legendre polynomi-
als. The first and second terms are linear com-
binations of two integrals of Legendre polyno-
mials.

(14+x)

]z(x) = P

(25)

The rest of the polynomials I, (#) are found from
the relationship obtained by Szab ( and Babuska
(1991) as:

1 p—
m(pn—l<X) Pns(x)), (26)

(n=3)

where P, (x) are Legendre polynomials. To fulfill

I, (x) =

essential boundary conditions of cantilever beam
at x=0 in cantilever Euler-Bernoulli beam, in-

tegrated Legendre Polynomials are modified to be

Jn(x) =L (x) =1, (0), n=3, 5, - (27)
The modified Duncan polynomials of Karunamoorthy,
Peters, and Barwey (1993) are obtained by or-
thogonalizing Duncan trinomials by using Gram-
Schmidt process. Duncan polynomials for bend-
ing are

1

1 1
6

—n(n+3)n"*?

Y., =
3 (28)

(n+2) (n+3) x"**
—I— n(n+1)x™*

for n=1, 2, 3, -+
for a cantilever beam and are complete and lin-

satisfy the boundary conditions
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early independent. These polynomials are or-
thogonalized in the interval 0 to 1 by the Gram-
Schmidt orthogonalization process and scaled so
that the tip deflection is unity Y, (1) =1. The or-
thogonalized polynomials also satisfy the bound-
ary conditions for a cantilever beam.

Bardell, Dudson, and Langley (1993) use the
special trigonometric functions in conjunction
with Hermite cubics. The trigonometric functions
used as hierarchical functions are

o) =sin(J (r—4) (1) Jsinh T (1) ) (29)

Bhat’s beam characteristic orthogonal polynomi-
als (Bhat, 1986) consist of choosing a first poly-
nomial ¢;(x) which satisfies both the geometrical
and the natural boundary conditions of a uniform
beam and obtaining the other members of the
orthogonal set in the interval by using the Gram-
Schmidt process as follows :

¢2(.’7C> = (X—Bz> ¢1(x), ey
o (x> = (X_Bk) ¢k—1<x> _Ck¢k—2(x>

/abxw(x) $i-1(x) dx
[ w000 s () dix

(30)

Bk:

where

/abxw (%) pa-1(x) pr2(x) dx
[ 1060 () d

where w(x) is the weighting function that is

Cr=

unity for uniform beams. When ¢;(x) satisfies

both geometrical and natural boundary condi-
tions, the additional polynomials generated by
Gram-Schmidt orthogonalization satisfy only the
geometric boundary conditions.

5. Results

Orthogonal functions mentioned in the previ-
ous section are examined for their respective per-
formance as the basis functions for the Rayleigh-
Ritz method employed to find the natural frequen-
cies of both non-rotating and rotating beams.
MATHEMATICA is used in generating the mass
and the stiffness matrices and getting eigenval-
ues for natural frequencies in the Rayleigh-Ritz
method. The analysis was done using Silicon Gra-
phics Octane workstation. For the reference pur-
pose, the results for a channel beam cases, ob-
tained using NASTRAN, are compared with the
present results.

5.1 A cantilever case

For the case of coupled bending-torsion vibra-
tion of a cantilever beam, most of the orthogonal
functions used show very good agreements, as
seen in Table 1 to the reference which also uses
Euler-Bernoulli beam theory for bending. For
Legendre and Chebyshev polynomials cases, arti-
ficial spring of stiffness 107 is added to the stiff-
ness term of (18) and (20). Figures 2 and 3 show
mode shapes obtained by NASTRAN. Among
orthogonal functions used in the analysis, beam

Table 1 The natural frequencies of coupled flexural torsional vibration of a short cantilever beam (750
CQUAD4 elements used in the NASTRAN analysis, Channel Dimensions: H=0.8 m, W=0.05 m,

t=0.005m, L=3.2m)

Polynomials 1 2 4 5 N |T (sec) | Integration
Bercin and Tanaka (1997) 24.03 88.54 | 131.41 | 358.57 | 549.83
Legendre 24.03 88.45 131.64 | 360.34 | 550.21 10 34.5 Symbolic
Chebyshev 24.03 88.45 131.64 | 360.34 | 550.21 10 55.2 4
Integrated Legendre 24.03 88.45 131.58 | 359.84 | 549.93 10 56.5 4
Modified Duncan 24.02 88.44 131.4 | 358.55 | 549.21 10 122.6 4
Beam Characteristic 24.03 88.44 131.44 | 366.62 | 549.49 5 284.4 4
Bardell’s functions 24.24 89.55 131.48 | 358.84 | 549.53 10 497.2 Numerical
NASTRAN 22.91 84.55 126.3 | 390.01 | 555.40 | FEM
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characteristic orthogonal polynomials show most
close approximations. Natural frequencies ob-
tained by NASTRAN also show some deviation
from the results given in the reference and from
the results obtained from the present results. This
seems to be due to the fact that the elements used
in the NASTRAN analysis are 2-dimensional
plate elements and allow all types of complicating
effects such as the shear deformation and rotatory
inertia along with a better representation of the
warping effect.

Mode 2, NF=85 Hz
Fig. 2 Mode shapes for the first and second modes

of a short cantilever channel beam obtained
using NASTRAN (1216 CQUAD4 elements)

5.2 A rotating cantilever case

Natural Frequencies of the flexural-torsional
coupled vibration of a rotating, cantilever, Ber-
noulli-Euler Channel Beam are shown in Table
2. For each case, 10 polynomials were used as
approximating functions. Also, the highest or-
der of polynomials used is 20 in the case of
Chebyshev and Legendre polynomials because
only even numbers of polynomials were used. For
the integrated Legendre polynomial case, the odd
order polynomials were also used and the hig-

Mode 4, NF=175 Hz
Fig. 3 Mode shapes for the third and fourth modes

of a short cantilever channel beam obtained
using NASTRAN (1216 CQUAD4 elements)

Table 2 Natural frequencies of a flexural-torsional coupled vibration of a rotating slender cantilever beam
(2=600 rpm, 392 CQUAD4 elements used in the NASTRAN analysis, channel specifications from
Bishop, Price, and Zhang, 1983, Channel Dimensions: H=12.7 mm, W=25.4 mm, t=0.635 mm,

L=1.016 m)
Polynomials 1 2 4 5 N | T (sec) | Integration
Legendre 15.802 | 55.397 | 123.519 | 220.014 | 351.397 | 10 36.9 Symbolic

Chebyshev 15.708 | 56.241 | 123.317 | 219.823 | 351.207 | 10 53.8 4
Integrated Legendre 15.862 56.32 | 126.293 | 225.34 | 358.124 10 55 4
Modified Duncan 15.77 | 55.386 | 122.891 | 217.854 | 343.495| 10 120.5 4
Beam Characteristic 15.77 | 55.373 | 122.754 | 217.659 | 343.423 10 216.9 4
Bardell’s functions 16.135 | 56.695 | 126.382 | 224.91 | 355.337 10 517.3 Numerical

NASTRAN 15.755 | 46.738 | 114.505 | 199.538 | 304.306 | FEM
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Mode 2. (NF=46.74 Hz)
Fig. 4 Mode shapes for the first and second modes of
a rotating cantilever channel beam obtained
using NASTRAN (£2=600 rpm, 8475 CQUAD4

elements)

Mode 3, (NF=114.51 Hz)
Fig. 5 Mode shapes for the “second” and third modes
of a rotating cantilever channel beam ob-
tained using NASTRAN (£2=600 rpm, 8475

CQUAD4 elements)

Muode 4, (NF=199.54 Hz)

Fig. 6 Mode shapes for the fourth mode of a rotat-
ing cantilever channel beam obtained using
NASTRAN (£2=600rpm, 8475 CQUAD4

elements)

1797

hest order was 19. In the cases of beam charac-
teristic and Karunamoorthy’s modified Duncan
polynomials, these polynomials of the order of 4
through 13 were used. Figures 4 through 6 show
mode shapes, for first through fourth modes, ob-
tained using NASTRAN. Figure 5 shows another
mode between the second mode and the third
mode. However this seems to be twist only mode
when compared to other mode shapes. Figures 7
and 8 show mode shapes obtained for different
approximating functions. These figures show that
there are some differences between mode shapes
obtained with NASTRAN and those obtained
with various orthogonal functions. However, the
results obtained using orthogonal polynomials
show close agreement with respect to each other.
Beam characteristic orthogonal polynomials show
the closest approximations to the NASTRAN
results when we see Table 2. However, the beam

—+— Modified Duncan

1.5 | =— Chebyshev
« Beam Charateristic
—=— Nastran
1.0
v
0.5
0.0
0.00 0.25 0.50 0.75 1.00
X
1.5
1.0
]
0.5
0.0
0,00 0,25 0,50 0,75 1.00

X

Fig. 7 The comparison of the first mode shapes ob-
tained with Rayleigh-Ritz method using var-
ious approximating functions and Nastran
mode shapes obtained with the NASTRAN
plate elements for a rotating bending-torsion
couopled slender cantilever channel beam
(£2=600 rpm)
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characteristic polynomials require a significant
amount of computational time in getting the co-
efficients of polynomials and generating the mass
and the stiffness matrices by integration as the
number of polynomials used are increased.

The reason that there are difference between
mode shapes between the results obtained with
the NASTRAN and the results obtained with var-
ious orthogonal polynomials is perhaps due to
the fact that warpings are not well considered in
the analysis with orthogonal polynomials. Figure
9 shows the side view of deformation at the tip
on the 4th normal mode. The left Figure in Fig.
9 shows apparent effect of warping on the cross
section but the effect is not seen in the section
deformation when we see the side view seen as in
the right figure in Fig. 9. Since warping stiffness
is considered in the present analysis, the deviation

—e— Modified Duncan
= Chebyshev
«— Beam Charateristic
—=— Nastran

0.0

-0.5
0.00 0.25 0.50 0.75 1.00

50

0.0
-5.0

a
=100

-15.0

=200
0.00 0.25 0.50 0.75 1.00

x

Fig. 8 The comparison of the mode shapes for the
second mode obtained using various approxi-
mating functions and Nastran for a rotating
bending-torsion coupled slender cantilever
channel beam (£2=600rpm). Note the sig-
nificant differences, in the amplitude of the
mode shape for the angular motion, obtained
for various polynomials

of results is most probably due to missing mode
which cannot be represented by orthogonal poly-
nomials. Therefore, in the case of the rotating
cantilever bending-torsion coupled beam, at least
the first mode could be correctly found with the
Rayleigh-Ritz method using orthogonal functions
but other modes were overestimated.

In Fig. 9, natural frequencies obtained by dif-
ferent number of polynomials are shown. The
case shown in the figure is the natural frequency
of the fourth mode shape of the rotating bending-
torsion coupled beam. In the figure, the results
obtained using Chebyshev, Karunamoorthy’s modi-
fied Duncan and beam characteristic orthogonal
polynomials are compared to each other. Among

Fig. 9 Tip deformation shape in the 4th normal
mode of a rotating bending-torsion coupled
beam as obtained by the NASTRAN analysis
(£2=600 rpm)

250 —+— Chebyshev
—— Karunamoorthy's
245 | —#&— Beam Characteristic
240 1\
235
Hz
230

225 \
220

L‘—'—n‘—‘ﬁ:ﬂ—n

215
5 10 15 20
Number of polvynomials
Fig. 10 Convergence results for the fourth mode, as

obtained by using different number of poly-
nomials, for coupled flexural-torsional vi-
bration of a slender channel beam (2=600
rpm)
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30 1

—4+— Chebyshev
#— Legendre
28 1 —#& Karunamcorthy's
»— Beam Characteristi
26 —X¥— NASTEAN
24
22
Hz 20

0 300 600 a00
rpm

1200

Fig. 11 Natural frequencies of the first mode of co-
upled flexural-torsional vibration for differ-
ent rotating speeds

30 —~  —%— Chebyshev
—— Legendre
28 ‘ Karunamoorthy's
—»— Beam Characteristic
26 —¥— NASTRAN

a 300 600 300

rpm

1200

Fig. 12 Natural frequencies of the first mode of ro-
tating coupled flexural-torsional vibration
for different lengths in meters (£2=600 rpm)

the orthogonal polynomials used, Karunamoorthy’s
modified Duncan polynomial and beam charac-
teristic polynomials show a faster convergence
than the Chebyshev polynomials which fulfill
essential boundary condition approximately using
the artificial springs.

To examine the effect of rotation, the natural
frequencies of first mode shapes of coupled flex-
ural-torsional vibration obtained using various
polynomials are compared to each other in Fig.
11. The figure shows a close agreement between
the results obtained using various polynomials.
The results from the NASTRAN analysis show a
slightly higher natural frequency at higher rota-
tion speeds than the results obtained using the
Ritz method employing various types of orthogo-
nal polynomials.

Next, the natural frequencies for the coupled
flexural-torsional vibration are obtained and com-
pared, in Fig. 12 for different lengths of the ro-
tating beam. The figure shows that natural fre-
quencies obtained using NASTRAN analysis shows
lower values than those using the Rayleigh-Ritz
method for shorter beams. This seems to be due to
the fact that shear and rotational inertia effects are
better accounted in the NASTRAN analysis.

6. Summary and Conclusion

Various orthogonal polynomials were examin-
ed to evaluate their performance in determining
the natural frequencies of normal modes in a
rotating beam having bending-torsion coupling.
Tested orthogonal polynomials show good ap-
proximations compared to other orthogonal func-
tions which contain trigonometric functions in
finding normal modes of non-rotating and ro-
tating beams. Among tested orthogonal functions,
simple Legendre polynomials gave best efficiency
in getting results. This is mainly because the in-
tegration takes less time with these polynomials.
Bardell’s orthogonal functions, do not show good
efficiency in getting results. This is mainly due to
the enormous time consumed in the integration of
the relevant functions when generating the mass
and stiffness matrices. Also, these orthogonal func-
tions give less accurate approximations compared
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to orthogonal polynomials when the same num-
ber of approximating functions are used. Beam
characteristic orthogonal polynomials show most
accurate results and a faster convergence but they
also require a significant calculation time in gen-
erating assumed mode polynomials for different
boundary conditions.

The polynomials employed here can be ex-
tended to analyze natural modes of coupled vi-
brations including axial and lateral vibrations
along with flexural-torsional vibrations. Further-
more, coupled vibrations of multi-cell composite
thin-walled beams can be analyzed using the de-
veloped method. Moreover, more efficient method
to fulfill essential boundary conditions and ex-
plicit addition of warping function in the strain-
displacement relation should be explored in the
future work.
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